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Abstract. Design models must abide by constraints that can come from
diverse sources, like metamodels, requirements, or the problem domain.
Modelers intent to live by these constraints and thus desire automated
mechanism that provide instant feedback on constraint violations. How-
ever, typical approaches assume that constraints do not evolve over time,
which, unfortunately, is becoming increasingly unrealistic. For example,
the co-evolution of metamodels and models requires corresponding con-
straints to be co-evolved continuously. This demands efficient constraint
adaptation mechanisms to ensure that validated constraints are up-to-
date. This paper presents an approach based on constraint templates that
tackles this evolution scenario by automatically updating constraints. We
developed the Cross-layer Modeler (XLM) approach which relies on in-
cremental consistency-checking. As a case study, we performed evolutions
of the UML-metamodel and 21 design models. Our approach is sound
and the empirical evaluation shows that it is near instant and scales with
increasing model sizes.
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1 Introduction

In Model-Driven Development (MDD) [1], metamodels play a key role as they
reflect real-world domains and define the language of models as well as the
constraints these models must satisfy. Over the past years, a trend has emerged
that calls for design tools with adaptable metamodels – to customize the tool to
a particular discipline, domain, or even application under development. Indeed,
those metamodels must evolve continuously; for example, to reflect changes of a
domain or to meet new business needs. Refactorings that improve a metamodel’s
structure and usability are also common. Nowadays, a range of “flexible” design
tools with adaptable metamodels are available to support such scenarios (e.g.,
[2, 3]).

Co-evolution of models denotes the process of concurrently evolving meta-
models and their models – a process that is non trivial since inconsistent co-
evolution may cause models and metamodels to drift apart. Several incremental
approaches have been proposed to support this process (e.g., [4]).



However, metamodels also impose constraints onto models. When the meta-
models evolve, so must the constraints – a scenario that has been largely over-
looked so far. For example, the Unified Modeling Language (UML) [5] is sup-
ported by hundreds of well-formedness rules and the community augmented
these with even more consistency rules. Moreover, UML Profiles, which may also
include consistency rules, are commonly used to extend the UML and adapt
it to specific domains [6]. Modifying the UML metamodel thus impacts these
constraints. Previously semantically and syntactically correct constraints may
become incorrect after structural or semantic metamodel changes; or new con-
straints may appear. It is crucial to extend the notion of co-evolution to include
the continuous maintenance of constraints such that only correct constraints are
enforced on design models. Of course, it is also crucial to have available a consis-
tency checker that is not only able to react to design model changes but also to
metamodel/constraint changes. Generating and adapting constraints incremen-
tally as well as checking them incrementally are thus pre-requisites to ensure
that designers are always given instant and reliable feedback on the validity of
their modeling work.

State-of-the-art consistency checkers are commonly employed to validate con-
straints and determine whether a model is consistent with respect to its meta-
model. Most consistency checkers rely on an existing set of constraints for per-
forming the validation [7, 8]. It is common to write these constraints manually,
typically in a standardized language such as the Object Constraint Language
(OCL) [9]. Often, constraints are also “hard-coded” into modeling tools. Al-
though the automatic co-evolution of metamodels and models has become an
active field of research, the issue of co-evolving constraints is not well addressed.
Incremental consistency checkers typically do not support the live updating of
constraints and little support for updating outdated constraints is available.

This paper describes an approach for the co-evolution of metamodels and
their constraints that uses constraint templates and a template engine to auto-
matically and incrementally manage constraints – it is an extension of a pre-
viously published idea-paper [10]. New contributions include the in-depth illus-
tration and discussion of the approach and a prototype implementation (the
Cross-Layer Modeler (XLM) [11]) that leverages from our previous work on the
Model/Analyzer [8], an efficient incremental consistency checker. Moreover, we
evaluated our approach by using the XLM for automating the generation of con-
straints that ensure the structural integrity of UML models and by performing
sample evolutions of the UML metamodel. Tests were performed on 21 large
industrial UML models of up to 36,205 model elements. While the UML is not
the primary motivation for our approach (it changes occasionally only), it is like
any modeling language in that it must adhere to a metamodel and imposes con-
straints. UML metamodel changes thus impose the same kind of challenges. The
fact that the UML language is far from trivial and we have available large-scale,
industrial models thus make it a very suitable environment to test the scalabil-
ity of our approach and the XLM tool. The results show that our approach is
correct and works efficiently even as model sizes increase.



(a) Metamodel (b) Model

Fig. 1: Metamodel and model of component-based system with constraints.

2 Example and Motivation

We use an excerpt of a simple metamodel, shown in Fig. 1a, to illustrate our work.
The metamodel consists of two elements: Component and Communication. Every
Component can include an arbitrary number of sub-components and can directly
use an undefined number of other components. A Communication expresses a
data exchange from a source to at most one target component. Components
can have an arbitrary number of open communications (com).

For building this metamodel, we used a simple metametamodel consisting of
the elements: Class, Reference, DerivedReference. References between classes
are drawn as arrows with an assigned name and a defined cardinality. Multiple
references can be combined to a single derived reference which we draw without
cardinality values and with dashed arrows to the references from which it is
composed. For example, a derived reference is used to retrieve the components
that are involved in a communication (inv).

For MDD to be effective, it is crucial to work with valid models that conform
to their metamodels. That is, that such models adhere to the constraints specified
in the following sources:

I: Metamodel directly. First, we use intuitive constraints that check the
cardinality of references. For each reference, we create a constraint (e.g., R1 or
R2 in Fig. 1a) that ensures that every instance of the owning element is con-
nected to the specified number of elements in a model (e.g., every instance of
Communication must be connected to exactly one Component instance through
a connection named source). We use the term connected in models to avoid am-
biguity with references in the metamodel. Connections are depicted as named
arrows in model diagrams. Constraints for references with unrestricted cardi-
nalities (e.g., com) are not shown in Fig. 1a for readability reasons. Note that
common modeling tools that use the Eclipse Modeling Framework (EMF) [12]
for example either do not derive such constraints or have them “hard-coded”,



meaning that changes cannot lead to constraint updates which effectively dis-
ables automated co-evolution.

II: Metamodel semantics. Next, we create a constraint for the derived ref-
erence (e.g., DR1 in Fig. 1a) to ensure that instances of the owning element are
connected to all the elements that are reached through the aggregated references
(e.g., for every instance of Communication, all elements that are connected to
it via source and target must also be connected via inv). Note that our con-
straints make use of OCL collection iterations even though they are invoked on
single objects. The issues arising because of the distinction between single and
multi-object values in OCL have been discussed and identified in literature as a
problem especially during evolution [13]. For the sake of generality, we use a con-
sistency checker with an OCL interpreter that allows collection operations being
used with single objects by performing the necessary conversions automatically.

III: Domain knowledge. While the first two kinds of constraints could be
generated automatically, constraints of the third type cannot be derived from
the metamodel automatically with traditional approaches. An example would
be a constraint that restricts direct usage of components based on component
hierarchies. We omit a detailed description of such a constraint because of space
restrictions.

As depicted in Fig. 1b, the metamodel from Fig. 1a is used to create a
small model of a calculator system. The Calculator component has two sub-
components that are used directly: Memory and Numeric. The Numeric compo-
nent also uses the component Memory. A Printer has three sub-components:
Formatter, Queue, and Controller. It uses the Queue to store print jobs and
informs the Controller, which retrieves data from the Queue and runs the
Formatter before printing. Finally, there is an Output component to display
information to the user. The Calculator uses a Communication element called
ResultComm to send its results to the Printer and the Output components.

As indicated by the encircled area in Fig. 1b, the two target connections
of ResultComm are causing an inconsistency because only one target is allowed
according to the metamodel. Note that any consistency checking approach could
detect inconsistencies in the model according to the constraints we defined above.

2.1 Incremental Consistency Checking

As the model size increases, so does the effort to check its consistency. Checking
consistency in an entire model can easily become a time consuming task. Incre-
mental consistency checking addresses this limitation by looking only at a sub-
set of an entire model, namely the elements that change as a model evolves [14].
This set of elements can be either directly observed or calculated from differences
between model versions [8,15]. The existing approach automatically defines con-
straint instances that validate whether specific model elements violate a given
constraint [14]. The change impact scope of a constraint instance is the set of
model elements that are used for calculating the constraint instance’s valida-
tion result which are also computed automatically. For example, Fig. 1b shows



Fig. 2: The evolved metamodel.

a constraint instance of the Communication metaclass constraint R1 that re-
quires communications to have exactly one target. The scope of this constraint
instance consists of the two elements that are reached through the target ref-
erence to Printer and Output. Changes falling within scope of a constraint
instance, like removing a target, would lead to a re-validation of the constraint
instance. The Model/Analyzer automatically creates, re-evaluates, and destroys
constraint instances according to changes in the model in Fig. 1b. However, if
the metamodel were to change, consistency checkers would continue to validate
the now-potentially-outdated design rules.

2.2 Co-Evolution Examples

Let us consider what happens when a metamodel changes. For instance, if the
number of maximum targets of a Communication rises from 1 to 100 because new
technologies allow multicasting of messages between components. Additionally,
a new derived reference all is introduced to combine the sub and use references
of a Component. These two changes are encircled with dashed lines in Fig. 2.
These changes have the following consequences:

– Constraint R1 becomes incorrect. The upper bound checked by R1 (1), is
no longer equal to the actual upper bound value of the reference (100).

– An additional constraint is needed for the new derived reference all.

In the first case, R1 must be adapted by replacing the upper limit value 1

with literal 100. Without this adaptation, the corresponding constraint instance,
circled in Fig. 1b, would still incorrectly try to enforce an upper bound of 1. In
the second case, the inconsistency that neither Calculator nor Printer have
the required connection all in our model is missed. To address this problem, a
constraint that checks the derived reference all needs to be added.

A common way of dealing with co-evolution is to manually re-write the con-
straints after performing a metamodel modification. Although this approach can
work in our example because of its small size and simple constraints, manually



Fig. 3: Example of steps performed during template definition, instantiation, and
change management.

identifying and adapting affected constraints in more complex models is both
time consuming and error-prone.

3 Constraint Templates and Template Engine

We propose the use of constraint templates to automate the co-evolution of
models and their constraints. These templates are based on the metamodel and
constraints we want to evaluate. Basically, templates contain the static aspects
that constraints have in common (e.g., fragments of an OCL constraint string)
and define the points of variability. As models evolve, the templates are filled with
specific data – to reflect the model evolution – and instantiated to automatically
generate or update the constraints.

Next, we illustrate how constraint templates can be derived and how they are
managed by a template engine to automate constraint generation and updating.

3.1 Template Definition

Templates are written manually by metamodel authors who are also in charge of
maintaining and evolving metamodels. Before discussing the authoring process
in detail, we discuss the structure of a template, as shown in Table 1, and the in-
formation it requires. The instantiation context (IC) defines for which elements,
or combinations thereof, a template should be instantiated. The abstract con-
straint expression (ACE) is used to define the family of constraints generated
from the template. A constraint family consists of constraints that share some
static aspects (e.g., the structure) and have some variable parts that differ for
each constraint. Thus, the ACE captures the static parts of the constraint family
and also identifies the locations of variability which are also defined explicitly
in the variable definition (VD). The VD declares which parts of the ACE are
interpreted as variables. To bind specific values to these variables, data has to



Table 1: Template structure

Instantiation context (IC)

Abstract constraint expression (ACE)

Variable definition (VD)

Instantiation information (II)

Data extraction expressions (DEE)

be read from specific elements that are available when the template is instan-
tiated. These elements are specified in the instantiation information (II). How
the values for the variables are extracted from the elements is declared in data
extraction expressions (DEE). Let us now show how we can write a template T1
for the constraint family of R1 and R2.

Template for cardinalities. The top-right section “Template definition” in
Fig. 3 illustrates the steps we perform next. The remainder of the figure depicts
template instantiation and change management processes we discuss later. Tem-
plate T1, shown in Table 2, creates a constraint for every instance of Reference,
for example when the reference target is added to the class Communication

during the initial modeling of our sample metamodel. Therefore, we define the
IC of our template to be <Reference>. This means that we provide an in-
stance of Reference to the template in order to create a new constraint. Note
that templates are reusable for other metamodels that conform to the same
metametamodel. We define the ACE by using the desired expression of one
sample constraint of the constraint family (e.g., an OCL statement) and replac-
ing all concrete values that are specific for a single instance with variables. In
our example, we take the expression from the constraint R1 for the reference
Communication.target in Fig. 1a:

context Communication inv:

self.target->size()>=0 and

self.target->size()<=1

Table 2: Definition of template T1

IC: <Reference>

ACE: context C inv:

self.R->size()>=MIN and

self.R->size()<=MAX

VD: <C, R, MIN, MAX>

II: <Reference r>

DEE: <C:r.owner.name, R:r.name,

MIN:r.min, MAX:r.max>

Table 3: Definition of template T2

IC: <DerivedReference>

ACE: context C inv:

self.DR-> includesAll(

REFS->collect(x|self.{x}))
VD: <C, DR, REFS>

II: <DerivedReference dr>

DEE: <C:dr.owner.name, DR:dr.name,

REFS:dr.refs->collect(name)>



And replace the two values 0 and 1 with MIN and MAX for the minimum and
maximum number of connected elements, the context Communication with C

for the checked class, and the two occurrences of target with R for the used
reference. The result is the abstract constraint expression:

context C inv:

self.R->size()>=MIN and

self.R->size()<=MAX

as defined in Table 2 with the variable parts (VD) being <C, R, MIN, MAX>. As
shown in Fig. 3, the instantiation information of T1 is <Reference r>.

Desired constraints are built by reading the min, max, and name values of
the passed reference r as well as the name of the class that owns the reference
owner.name. The data extraction expressions can then be written as r.min,
r.max, r.name and r.owner.name. In the DEEs, the variable to which the read
data should be assigned is written before each DEE followed by a colon. Note
that because of the single element instantiation context (i.e., we instantiate the
template for every instance of that type), only one element is available as instan-
tiation information, making both the II itself and the use of a prefix (i.e., “r”)
for the DEEs redundant. However, if more complex patterns were used in the
IC, the II would contain more than one element from which DEEs read data. For
example, we could have used the pattern <Class,Reference> as IC for T1 to
generate a constraint for each reference that is actually added to a class. Then,
distinguishing the class and the reference in the II and using prefixes in DEEs
becomes necessary. We have now completed the template definition for T1.

Template for derived references. We use the same process to write template
T2, as shown in Table 3, based on the constraint DR1 as an example for the
constraint family that checks derived references.

As a simplification, we replaced the set of references (Set{self.source,
self.target}->flatten()) from DR1 in Fig. 1a with a construct
(collect(x|self.{x})) that allows us to aggregate the results of different ref-
erences – based on a set of reference names – dynamically. When the template
is instantiated for the derived reference Communication.inv, the resulting con-
straint is:

context Communication inv:

self.inv->includesAll(

Set{‘‘target’’, ‘‘source’’}->collect(x|self.{x}))

The expression Set{‘‘target’’, ‘‘source’’}->collect(x| self.{x}) then
collects all the elements returned by the expressions self.target and
self.source.

Now that the templates T1 and T2 are written, let us discuss how templates
are instantiated automatically to generate constraints.



3.2 Template Instantiation

To enable a template, it is passed to the template engine that observes a specific
model and handles template instantiation and updating. We will now discuss
how the template T1 for checking reference cardinalities is instantiated when it
is applied to the metamodel in Fig. 1a.

For each occurence of the IC <Reference>, the template is instantiated once.
In Fig. 1a there are five references and thus T1 is instantiated five times. How-
ever, we focus on a detailed discussion of the instantiation process for the ref-
erence Communication.target, as illustrated in the bottom box “Template in-
stantiation” in Fig. 3. The process starts with the instantiation information
(1). In this case, it containts the reference target. The data extraction ex-
pressions are applied to the element to retrieve the names (i.e., Communication
and target) and the cardinality values (i.e., 0 and 1). This is shown in Fig.
3(2). In order to allow later updates of the generated constraints, the constraint
scope is built automatically during the execution of the DEEs in step (2). This
scope constains all elements that are accessed by the DEEs. The scope for the
constraint R1 is therefore <target.owner.name, target.name, target.min,

target.max>. The variables in the ACE are then replaced with these values to
generate the constraint (3).

After applying our templates T1 and T2 to the initial version of our example
metamodel from Fig. 1a, template T1 was instantiated once for every reference
(i.e., five times in total), template T2 was instantiated once to generate the
constraint for the only derived reference inv in the metamodel.

At this point we have shown how templates are written and how they are
instantiated. We have seen that a template captures the static and the variable
parts of a family of constraints. Typically, a single constraint template is written
for every constraint family in the system. Combining templates is only necessary
in the rare cases where different constraint families should be merged into one. If
such a merge is required, template authors can build the corresponding template
by writing a template for the merged constraint families. Next, we will illustrate
how automatic constraint updates are performed.

3.3 Change Management

In Section 2 we discussed the effects of two metamodel evolutions on the cor-
rectness of constraints. We will now present how such metamodel evolutions are
handled automatically by the template engine.

Metamodel evolution. After every modification of the metamodel, the tem-
plate engine is notified, as shown in the top-left box “Change management” in
Fig. 3. The change notification includes information about the changed meta-
model elements which the engine uses to determine the actions that are required
to adapt the set of current constraints to the new version of the metamodel.

After the addition of metamodel elements, the engine looks for templates
that can be instantiated (i.e., the types of the added model elements match the



instantiation context). When metamodel elements are deleted, constraints that
are based on these elements (i.e., their scope contains a removed element) are
also removed. A metamodel element modification triggers the update process
and the template engine uses the modified model element and the constraint
scopes to calculate the set of affected constraints that need updating.

As an example, consider the metamodel version shown in Fig. 2. We first
replaced the upper bound value 1 of the constraint R1 with the value 100. The
change notification that is passed to the engine indicates that the metamodel
element target.max was modified. Since the scope of the constraint R1 contains
the modified element, as discussed above, the engine detects that this constraint
is affected by the modification. Because there are no other constraints that in-
clude the modified model element in their scope, R1 is identified as the only
constraint that needs to be updated.

The update is performed by executing the data extraction expressions that
added the modified metamodel element to the constraint’s scope, as depicted by
step (*) in Fig. 3, and replacing the outdated values in the constraint expression
with the newly retrieved ones. In our example, target.max now returns the
value 100. Replacing the old value results in the new constraint expression

context Communication inv:

self.target->size()>=0 and

self.target->size()<=100

And the constraint co-evolution was successfully completed. Note that currently
we delete the existing constraint and re-instantiate the template to generate
an updated constraint. The update of single values or logical fragments in the
existing constraints will be addressed in future work.

The second metamodel modification we have to consider is the addition of the
new derived reference all to Component. When the template engine is informed
that a derived reference has been added, it automatically discovers that this
element matches the instantiation context of template T2. Therefore, template
instantiation is triggered and the instantiation information <all> is used by the
data retrieval expressions to retrieve the values that are then used to replace the
variables in T2 in order to produce the required constraint.

Finally, let us consider what would happen if we remove the derived reference
Communication.inv in another evolution step. In that case, the template engine
would identify DR1 as the only constraint that includes the removed element in
its scope. Therefore, it would remove the no longer needed constraint DR1 from
the metamodel automatically.

Model evolution. As we have discussed in Section 2.1, changes of a model typ-
ically lead to a re-validation of affected constraint instances. With our approach,
such changes can affect the scopes of generated constraint instances. For exam-
ple, imagine the addition of a new component as a target of ResultComm in Fig.
1b. Indeed, this may affect the consistency status of a constraint instance of R1.
However, since such changes are handled entirely by the employed consistency
checker, we omit a detailed discussion here and refer to [8].



4 Evaluation and Analysis

We evaluated the applicability and the performance of our approach with a case
study that was done using a prototype implementation.

4.1 Prototype Implementation

For the evaluation, we developed the Cross-Layer Modeler (XLM) [11]. This tool
allows working with models and their metamodels at the same time, which means
that manipulations of the metamodel have immediate effects on the conformance
of the model. The XLM leveraged from our previous work on the Model/Analyzer
[8, 14] which supports efficient and scalable incremental consistency checking of
arbitrary design constraints.

We extended the Model/Analyzer by adding an incremental template en-
gine and the corresponding infrastructure to support the incremental creation,
deletion and modification of constraints (based on meta model changes) which
the Model/Analyzer then incrementally validates against model changes. Ten
sample templates from different domains are available at the tool website [11].

4.2 Case Study: UML

As our case study, we used templates and the Cross-Layer Modeler tool to au-
tomate constraint generation and updates for the UML. We chose UML as the
subject because it is a well known and commonly used language for modeling
software systems. We argue that its size and high level of complexity make it ideal
for our purposes because the sample evolutions we performed simulate typical
evolutions of metamodels in general. Additionally, numerous industrial software
models are available [16]. We ran tests with 21 models with sizes from 3,077 to
36,205 model elements (i.e., instances of UML elements) and with different char-
acteristics for our experiments. Every test was performed 100 times on an Intel
Core i5-650 machine with 8GB of memory running Windows 7 Professional. The
median and average values were used for analysis.

We used templates to automatically create constraints that check the struc-
tural integrity of UML model elements (e.g., modeled classes). Structural in-
tegrity is given if a model element provides the structural features as defined in
the UML metamodel. Our constraints are based on the ECore metamodel and
check the number of assigned elements as well as the assigned elements’ types for
every reference and attribute in the UML (e.g., every instance of NamedElement
must have exactly one String object assigned as its name). We classify the
changes in our study in three categories.

Category I. Metamodel evolution. Different metamodel modifications
and common refactorings have been discussed in literature [4, 17–21]. During
most common metamodel evolutions, references or attributes are added, re-
moved, or are modified (e.g., the cardinality of an attribute is changed or an
attribute is moved to another class). Therefore, we performed these kinds of



(a) Metamodel evolutions. (b) Template addition/removal.

Fig. 4: Evaluation results.

evolutions with the UML metamodel. From this point on we will use the term
property for references and attributes alike.

Scenario 1. Add new property. In the first scenario, a new property was added
to every single element of the UML metamodel, which required the generation of
a new constraint (as we discussed in Section 2.2 where we added a new derived
reference to our sample metamodel). We investigated the total time required for
performing the metamodel change, the required co-evolutions and the valida-
tion of the model with the new constraint. Note that for our statistics we only
considered those changes that created constraints that could actually be vali-
dated with at least one model element (e.g., we ignored the addition of a new
reference to UseCase if the model did not include any use cases). Fig. 4a shows
the required processing times for changes that affected different numbers of con-
straint instances. 99% of all modifications took less than 166ms to finish and only
0.15% of all performed changes took more than 500ms. On average, changes took
12.5ms and the generated constraint was validated with 201 constraint instances
in the model. For the addition of elements in this test we observed a Pearson
correlation coefficient of 0.845 between the required time and the number of
required validations. The correlation between T and the model size S, P (T, S)
was 0.099, which indicates that the processing time strongly depends on the
validation effort needed for the new constraint and that it is independent from
the model size.

Scenario 2. Remove existing property. In the second scenario, each test run
started with the unmodified UML metamodel and exactly one property was
removed, meaning that exactly one constraint became obsolete and was removed
from the consistency checker. Again, only changes of metamodel elements that
were actually used in the model were captured. 99% of all modification took
less than 38.5ms. Only 0.1% of the modifications took longer than 250ms. On
average, element removal took 4.5ms and 202 constraint instances were removed
with the obsolete constraint. Fig. 4a shows that property removal is always faster
than addition because there is no need for validating any constraint instances.



Scenario 3. Modify existing property. For these tests, the cardinality as well
as the name of every existing property in the UML were changed. 99% of the
modification that caused an update of actually validated constraints were pro-
cessed in less than 180ms and 0.1% took more than 1,000ms. For the modification
of elements we observed a correlation coefficient of 0.734 between the required
processing time and the number of validations.

Category II. Model evolution. The incremental consistency checker that
is used by the Cross-Layer Modeler, the Model/Analyzer, is highly scalable [16].
We previously evaluated the approach on 34 models with model sizes of up to
162,237 model elements and 24 types of consistency rules (constraints). Empir-
ical evaluation showed that the consistency checking part requires only 1.4ms
to re-evaluate the consistency of the model after a change for typical UML
consistency and well-formedness constraints [22]. The data indicates that the
additional change processing infrastructure does not impose a significant perfor-
mance penalty.

Category III. Template addition and removal. Even though adding,
removing, or changing a template is a task performed less often than metamodel
evolutions, we still investigated this aspect. Since the addition of a new tem-
plate requires a full scan of the metamodel to create all possible constraints and
a complete initial validation of the model we expected this task to be more time
consuming than processing changes incrementally. The processing times for the
addition and removal of the templates we used in Category I to the UML meta-
model that caused the generation or removal of different numbers of constraint
instances are shown in Fig. 4b. Adding a template took less than 5,700ms in
90% of our tests, in only 8% of the tests it took more than 10s. On average, the
addition of a template took 2,818ms and created constraints that were validated
31,936 times. Removing a template does not require validations of constraints,
thus this task is performed in less than 1,600ms in 90% of our tests. Only 5% of
template removals take more than 3s.

Summary. The results of the representative metamodel evolutions clearly
indicate that our approach is applicable to large and complex metamodels and
that it is fast enough to deliver instant feedback about model consistency after
metamodel changes. Processing changes that occur frequently during early de-
velopment phases takes only milliseconds with our approach in most cases and
even the worst case values are acceptable considering the fact that they were still
below 16s and were reached in less than 1% of all changes. Although changing
templates is slightly more expensive because of the inevitable processing of the
entire model, the values are still acceptable for a rarely performed task.

4.3 Applicability

In the presented examples, we have illustrated how our approach performs co-
evolution of model constraints when metamodel changes occur. However, our
approach is not limited to metamodels as the source of constraints. Quite the
contrary, any model can be used to trigger template instantiation and the gener-
ated constraints may restrict any kind of model – even metamodels [23]. To date,



various sample templates for different metamodels and models are available [11],
thus we are confident that the approach is generally applicable.

Note that evolving constraints also enables repair technologies that fix de-
tected inconsistencies (e.g., [24–26]). Therefore, our approach provides a foun-
dation for providing guided or even automatic co-evolution of metamodels and
models based on evolved constraints.

5 Related Work

There has been an extensive research activity in models and their evolution.
Here we focused on those closest to our work and grouped them in three themes.
Metamodel and model (co-)evolution. The efficient, and ideally automated,
(tool-)support for metamodel evolution and the corresponding co-evolution of
conforming models was identified by Mens et al. in 2005 as one of the ma-
jor challenges in software evolution [27]. Since then, various approaches have
been proposed to deal with this challenge. Wachsmuth addresses the issue of
metamodel changes by describing them as transformational adaptations that
are performed stepwise instead of big, manually performed ad hoc changes [21].
Changes to the metamodel become traceable and can be qualified according to
semantics- or instance-preservation. He further proposes the use of transforma-
tion patterns that are instantiated with metamodel transformations to create co-
transformations for models. Cicchetti et al. classify possible metamodel changes
and decompose differences between model versions into sets of changes of the
same modification-class [28]. They identify possible dependencies that can occur
between different kinds of modifications and provide an approach to handle these
dependencies and to automate model co-evolution.

Herrmannsdoerfer et al. also classified coupled metamodel changes and inves-
tigated how far different adaptations are automatable [29]. One aspect that these
approaches have in common is that they are based on decomposing evolution
steps into atomic modification for deriving co-adaptations. Our approach is also
based on atomic modifications that are handled individually to perform neces-
sary adaptations incrementally. However, we do not try to automate co-evolution
of metamodels and models in the first place. Instead, the co-evolution of meta-
models and constraints enables tool users to perform adaptations of a model
with guidance based on specific constraints and their own domain knowledge.

Wimmer et al. follow a different approach by merging two versions of a meta-
model to a unified metamodel and then applying co-evolution rules to the mod-
els [30]. They instantiate new metaclasses and remove existing elements that are
no longer needed. At first, they encountered problems regarding typecasts and
instantiation so they had to change some co-evolution rules. XLM can handle the
instantiation of created metaclasses as well as arbitrary typecasts of instances.

In terms of constraint co-evolution, Büttner et al. discuss various metamodel
modifications and how they affected constraints [13]. They describe how OCL
expressions can be transformed to reflect metamodel evolution. We encountered
some of the issues they identified during the evolution of our running example,



for example the transition from single-object to collection values and vice versa
because of multiplicity changes which is handled automatically in XLM.
Flexible and multilevel modeling. Atkinson and Kühne identified several
issues in the field of multilevel (meta-)modeling, namely the so-called shallow
instantiation of the UML [31] that forced us to use a graph-oriented model
in XLM. They discussed different approaches to overcome these issues like the
concept of deep instantiation where instances can be types at the same time; an
approach we used in our tool’s graph model. Ossher et al. lately presented the
BITKit tool [3] that allows domain-agnostic modeling and on-the-fly assignment
of visual notations to dynamically defined domain types. This approach is also
implemented in our tool where the type of a model element can be changed at
any time.

6 Conclusions and Future Work

This paper presented an approach that uses constraint templates and an auto-
mated template engine to address the issue of co-evolving metamodels and con-
straints. We illustrated how constraint templates can be written and constraints
are generated from them. Moreover, we discussed how automatic co-evolution
of constraints is achieved and developed a prototype implementation. We per-
formed a case study with UML as an example of a sophisticated metamodel
and 21 industrial UML models that clearly showed that our approach is applica-
ble for complex metamodels. The approach is scalable and processing times for
co-evolution are primarily affected by the number of required validations after
constraint generation or update.

For future work, we plan to investigate the possible benefits of using the
approach not only for metamodel-dependent constraints but also for constraints
that primarily rely on domain-knowledge. Moreover, we want to expand the
approach so that not only constraints but also new templates can be generated
through template instantiation.
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